Suppression of insulin receptor substrate 1 (IRS-1) promotes mammary tumor metastasis.
نویسندگان
چکیده
The insulin receptor substrate (IRS) proteins are cytoplasmic adaptors that organize signaling complexes downstream of activated cell surface receptors. Here, we show that IRS-1 and IRS-2, despite significant homology, play critical yet distinct functions in breast cancer, and we identify specific signaling pathways that are influenced by IRS-1 using the polyoma virus middle-T (PyV-MT) transgenic mouse model of mammary carcinoma and Irs-1 null (Irs1(-/-)) mice. The absence of Irs-1 expression enhanced metastatic spread significantly without a significant effect on primary tumor growth. Orthotopic transplant studies revealed that the increased metastatic potential of Irs1-deficient tumor cells is cell autonomous. Mammary tumors that developed in PyV-MT::Irs1(-/-) mice exhibited elevated Irs-2 function and enhanced phosphatidylinositol 3-kinase/Akt/mTor activity, suggesting that one mechanism by which Irs-1 impedes metastasis is to suppress Irs-2-dependent signaling. In support of this mechanism, reduction of Irs-2 expression in Irs1(-/-) tumor cells restored mTor signaling to wild-type levels. PyV-MT::Irs1(-/-) tumors also exhibited a significant increase in vascular endothelial growth factor expression and microvessel density, which could facilitate their dissemination. The significance of our findings for human breast cancer is heightened by our observation that Irs-1 is inactivated in wild-type, metastatic mammary tumors by serine phosphorylation. Collectively, our findings reveal that inactivation of IRS-1 enhances breast cancer metastasis and support the novel hypothesis that IRS-1 has metastasis suppressor functions for breast cancer.
منابع مشابه
Suppression of Insulin Receptor Substrate-1 (lRS-1) Promotes Mammary Tumor Metastasis
The insulin receptor substrate (IRS) proteins are cytoplasmic adaptors that organize signaling complexes downstream of activated cell surface receptors. Here, we show that IRS-1 and IRS-2, despite significant homology, play critical, yet distinct functions in breast cancer and we identify specific signaling pathways that are influenced by IRS-1 using the Polyoma Virus Middle-T (PyV-MT) transgen...
متن کاملInsulin Receptor Substrate-2 (IRS-2): A Novel Hypoxia-Responsive Gene in Breast Cancer: A Dissertation
Breast cancer is the most common malignancy among women in the U.S. While many successful treatments exist for primary breast cancer, very few are available for patients with metastatic disease. The purpose of this study was to understand the role of Insulin Receptor Subtrate-2 (IRS-2) in breast cancer metastasis. IRS-2 belongs to the IRS family of cytoplasmic adaptor proteins that mediate sign...
متن کاملMechanistic Analysis of Differential Signal Transduction Mediated by the Insulin Receptor Substrate Proteins IRS-1 and IRS-2: A Dissertation
Insulin Receptor Substrate-1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate Phosphatidylinositol-3-Kinase (PI3K), only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine th...
متن کاملInvolvement of insulin receptor substrate 2 in mammary tumor metastasis.
The insulin receptor substrate (IRS) proteins are adaptor molecules that integrate signals generated by receptors that are implicated in human breast cancer. We investigated the specific contribution of IRS-2 to mammary tumor progression using transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and IRS-2-null (IRS-2(-/-)) mice. PyV-MT-induced tumor init...
متن کاملInsulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma.
Insulin receptor substrate-1 (IRS-1) is a signaling adaptor protein that interfaces with many pathways activated in lung cancer. It has been assumed that IRS-1 promotes tumor growth through its ability to activate PI3K signaling downstream of the insulin-like growth factor receptor. Surprisingly, tumors with reduced IRS-1 staining in a human lung adenocarcinoma tissue microarray displayed a sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 26 24 شماره
صفحات -
تاریخ انتشار 2006